Vol. 64 No. 4 (2019): January - June (2019)
Articles

Problematic of the passive cooling systems in hot-humid tropical zones

Ignacio A. Guzmán-Hernández
Universidad Politécnica de Cataluña
Fidel Cano
Universidad Politécnica de Cataluña
Jaime Roset
Universidad Politécnica de Cataluña
portada_numero

Published 2019-06-26 — Updated on 2023-01-13

Versions

Keywords

  • cooling,
  • hot-humid climate,
  • passive systems,
  • thermal comfort

How to Cite

Guzmán-Hernández, I. A., Cano, F., & Roset, J. (2023). Problematic of the passive cooling systems in hot-humid tropical zones. AULA Revista De Humanidades Y Ciencias Sociales, 64(4). https://doi.org/10.33413/aulahcs.2019.64i4.104 (Original work published June 26, 2019)

Abstract

This article focuses on expressing some problems with the implementation of some passive cooling systems for housing projects located in hot-humid climatic zones, since most of the time the climatic conditions are of thermal discomfort. The biggest problem is that high temperatures are accompanied by high levels of humidity, making it necessary to implement more than two cooling strategies, and although effective, they do not manage to be sufficient to maintain comfort levels most of the time, making necessary the use of active systems that consume a lot of energy. In the development of the article, some passive cooling strategies proposed by Givoni in their bioclimatic chart (Givoni, 1969) are analyzed separately to know their degree of effectiveness in a proposed case study with a hot-humid climate with rainfall throughout the year. With the strategies studied, the aim is to reduce the temperature as well as humidity inside a standard room.

Downloads

Download data is not yet available.

References

  1. ASHRAE. (1993). Handbook, Fundamentals. ----. (2004). Thermal environmental conditions for human occupancy (Vol. 55).
  2. Cervantes, J., Barradas, V., Martínez, A., Cordova, Q., Ramírez, C., & Tepach, G. (2000). Aspectos del clima urbano de Villahermosa. Universidad y Ciencia, 16, 10-16. Tabasco, México.
  3. Daud, W. R. W. (2001). A novel short-cut design method for adsorbers used in gas dryers and dehumidifiers.
  4. Derradji, M., & Aiche, M. (2014). Modeling the soil surface temperature for natural cooling of buildings in hot climates. Procedia Computer Science, 32, 615- 621.
  5. Djongyang, N., Tchinda, R., & Njomo, D. (2010). Thermal comfort: A review paper. Renewable and sustainable energy reviews, 14(9), 2626-2640.
  6. Evans, B. (1957). Research report 59. Texas: texas engineering station.
  7. Givoni, B. (1969). Man, climate and architecture. Amsterdam: Elsevier Science.
  8. Cooled soil as a cooling source for buildings. Solar Energy, 81(3), 316-328.
  9. Hinz, E. (1986). Proyecto clima y arquitectura: informe final de la primera etapa del trabajo de investigación.Universidad del Zulia.
  10. INEGI. (2016). Encuesta nacional de ingresos y gastos de los hogares 2016. México.
  11. Olgyay, V. (2015). Design with Climate: Bioclimatic Approach to Architectural Regionalism-New and expanded. Princeton university press.
  12. Olgyay, V., & Frontado, J. (1998). Arquitectura y clima: manual de diseño bioclimático para arquitectos y urbanistas. Barcelona, España: Editorial Gustavo Gili.
  13. Palme, M., Aldunate, C.C., & Huerta, M.A.G. (2016). Estimación del riesgo de sobrecalentamiento y del potencial de refrigeración por ventilación natural de viviendas unifamiliares en ciudades costeras de Chile. Hábitat Sustentable, 52-61.
  14. Steadman, R.G. (1994). Norms of apparent temperature in Australia. Aust. Met. Mag, 43, 1-16.